Regression

Regression is a statistical method used to model the quantitative relationship between one or more explanatory variables (predictors or regressors) and a target variable (dependent variable or regressand). When there is more than one explanatory variable, the method is referred to as multiple regression.

Linear Regression

Linear regression is the simplest form of regression. It models linear relationships such as, "For every degree Celsius increase in the daily maximum temperature (explanatory variable), the number of ice cream sales per day (target variable) increases by a fixed amount." A linear regression estimates a suitable coefficient (factor) for each explanatory variable, ensuring that the combined effect best describes the target variable. Graphically, the mechanism of simple linear regression (i.e., involving only one explanatory variable) can be illustrated as follows: When data points are plotted on a coordinate system (x-axis: explanatory variable; y-axis: target variable), the goal is to find a line that best approximates these data points.

Regression line of a simple linear regression in a scatterplot

Collinearity

(Stochastic) Collinearity refers to a situation where one explanatory variable is highly correlated with another explanatory variable. Collinearity is a common issue in regression models. When two variables are strongly correlated, it becomes difficult from a data or model perspective to determine which one truly influences the dependent variable. One of them may be redundant, or both might be relevant in an appropriate weighting based on logical reasoning. Collinearity leads to unstable estimates of the model coefficients in regression and generally complicates the interpretation of the model. If an explanatory variable is correlated not just with one but with several other explanatory variables, this is referred to as multicollinearity.

Regularized Regression

Regularized regressions are special forms of regressions in which model complexity is penalized with the aim of generating a model that is as robust and generalizable as possible and avoiding overfitting.

To account for model complexity when estimating the model, not only the deviations of the model from the actual data are considered, but also the magnitudes of the model coefficients are examined and controlled effectively. Examples of regularized regressions include Ridge Regression, Lasso Regression, and Elastic Nets.

You are about to leave our website via an external link. Please note that the content of the linked page is beyond our control.

Cookies und andere (Dritt-)Dienste

Diese Website speichert Cookies auf Ihrem Computer nur, wenn Sie dem ausdrücklich zustimmen. Bei Zustimmung werden insbesondere auch Dritt-Dienste eingebunden, die zusätzliche Funktionalitäten, wie beispielsweise die Buchung von Terminen, bereitstellen. Diese Cookies und Dienste werden verwendet, um Informationen darüber zu sammeln, wie Sie mit unserer Website interagieren, und um Ihre Browser-Erfahrung zu verbessern und anzupassen. Zudem nutzen wir diese Informationen für Analysen und Messungen zu unseren Besuchern auf dieser Website und anderen Medien. Weitere Informationen zu den von uns verwendeten Cookies und Dritt-Diensten finden Sie in unseren Datenschutzbestimmungen.